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The general Hartree-Fock energy in the frontier orbital model in the terms of independent vari- 
ables is given. The existence conditions for extrema of this expression are derived and their relation 
with various types of solutions of the HF problem as RHF, UHF and complex wavefunctions is shown. 
The connection between overall properties of the energy surface and the local properties i.e. the stabi- 
lity and instability conditions of various kinds is demonstrated. The conditions for the occurrence 
of "~strange" HF solutions are expressed in terms of quantities characterizing the correlation effects. 
This shows explicitly that the lack of respecting the electronic correlation is the reason for the occur- 
rence of the ~strange'" HF solutions for the molecular configurations which exhibit a certain amount 
of diradical character. 
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1. Introduction 

As it is well known,  dur ing  the chemical  reac t ions  and  molecu la r  rea r range-  
ments  the nonequ i l i b r ium molecu la r  geometr ica l  conf igura t ions  can exhibi t  a 
cer tain a m o u n t  of spin decoupl ing.  In the concer ted  reac t ions  due to the delocal i -  
za t ion  of the e lect rons  involved  in b reak ing  and  creat ing bonds,  the overal l  spin 
decoupl ing  can be fairly small .  Therefore,  in such cases, the one-e lec t ron  descr ip-  
t ion of the reac t ion  pa th  can be successfully used ( W o o d w a r d - H o f f m a n n  rules). 
If the reac t ion  proceeds  t h rough  the in te rmedia tes  of  d i rad ica l  or  d i rad ica l - l ike  
character ,  the a p p r o p r i a t e  descr ip t ion  of spin decoup l ing  is crucial.  I t  is obvious  
tha t  besides the two above  men t ioned  ext reme s i tuat ions  the in-between cases 
can occur  i.e. a cer ta in  a m o u n t  of  spin decoup l ing  exists in spite of the e lect ron 
delocal iza t ion.  Therefore,  the app l icab i l i ty  of  the one-e lec t ron  a p p r o a c h  for 
descr ip t ion  of  the reac t ion  pa th  must  be cri t ical ly and  carefully examined.  In  
fact, var ious  phys ica l ly  unaccep tab le  so lu t ions  of  the H a r t r e e - F o c k  p r o b l e m  
(which is in general  of compl i ca t ed  ma thema t i ca l  na ture  [-1-5]) arise jus t  for 
the molecu la r  geometr ies  sufficiently far f rom the equi l ib r ium ones. 

It is poss ible  to ob ta in  symmet ry  n o n a d a p t e d  rest r ic ted H F  (RHF)  solut ions  
for symmetr ica l  molecules  [-6, 7, 14, 15], unres t r ic ted  H F  ( U H F )  for closed shell 

* The summary of the results has been presented at the 6th Jerusalem Symposium on Quantum 
Chemistry and Biochemistry and at the I. Congress of Quantum Chemistry, Menton, July 1973. 

** On leave of absence from Institute "'Rudjer Bogkovid", Zagreb, Yugoslavia. 
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molecules [6-15], complex HF solutions [16-20] and additional RHF symmetry 
adapted solutions [21, 22]. 

The customary iterative procedure [23] used for solving the HF problem 
exhibits further strange ("pathological") properties when the iterative process 
does not end with the Slater determinant, which can be considered as a solution 
of the HF problem [24, 25]. 

The occurrence of the strange HF solutions for certain molecular geometries 
of similar character (mainly nonequilibrium ones) indicates the existence of the 
common physical background, probably in an improper description of the elec- 
tronic configurations by the one-electron approximation. It has been shown 
[10, 24] that even small deviation from equilibrium geometries for polyenic 
chains give rise to the strange HF solutions which can be taken as indication of 
the presence of diradical character 1. 

The analysis of the HF problem and the connection among the HF solutions 
of the various kinds is important from two points of view. First, for determining 
the limits of the applicability of one electron approximation, which is still the 
most widely used approach for describing the reaction path. Secondly, the failure 
of the one-electron approach to give the physically acceptable solutions can be 
taken as indication of diradical character for molecules for which the presence 
of diradical properties cannot be seen at the first glance. 

The purpose of the analysis presented in this work is to find the common 
reason and mutual relations of the described strange properties of the HF ap- 
proach. The explicit analysis is carried out in this paper and the accompanying 
one on the two-electron system in the minimal basis set (two-orbital model). 

The frontier orbital model of Fukui is of such nature (cf. [19, 20]) and can 
be used when the electronic structure of a polyatomic molecule is substantially 
determined by one occupied and one unoccupied, most frequently the highest 
occupied and the lowest unoccupied molecular orbitals in the framework of 
the one-electron approximation. The frontier orbital model is particularly suitable 
for studying the electronic configurations in the neighborhood of the molecular 
orbital crossing. 

In the frontier orbital model the energy expectation value for the corresponding 
Slater determinant is a simple expression in the terms of independent variables 
which enter through the one electron density matrix (compare [27]). This general 
HF energy expression gives the natural connection among various kinds of HF 
solutions: symmetry adapted and symmetry nonadapted, restricted, unrestricted 
and complex solutions. 

In general, the HF solutions are extremum points on the energy surface in 
the general space Y of the independent variables [21, 27] and the HF energy. 
The HF solutions are obtained under various constraints which define the corre- 
sponding subspaces of the general space Y (compare also [4]). Visualization of 
this complicated space structure is possible in the case of simple frontier orbital 
model. The possible generalization to the more complicated cases can be easily 
made, as well. 

1 Between the submission of the original and revised version of this paper following articles 
appeared: Yamaguchi, K., Fueno, T., Fukutome, H.: Chem. Phys. Letters 22, 461 (1973); Gregory, A. R.: 
J. Chem. Phys. 60, 1680 (1974). 
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2. Fukui's Frontier Molecular Orbital Model 

The frontier orbital model describing the polyatomic molecule has formal 
similarity with a minimal basis description of a diatomic molecule, the main 
difference being in the bigger flexibility of molecular integrals (cf. [20]). 

Frontier orbitals [k~) occupied by the electron with the spin 2(2 = cq fl) in 
the configuration k and the corresponding virtual unoccupied frontier orbitals 
fku~) can be taken as linear combination of suitable one-electron orthonormal 
functions. 

I 'g~) = C h I~Ol) + C~2 I,;o2}, (1) 

I'g~;> - -  C2~1 I~o~) + c~2 Iq~2;> �9 (2) 

The one-electron functions ItPl> and Iq~2> can be equivalent orbitals for sym- 
metrical molecules or other functions. We assume in Eqs. (1) and (2) that the func- 
tions liP j)  are not different for different spins, which does not  have to be always 
exactly the case in the U H F  approach. The spin labelled frontier MO's (2 = e, fl) 
make possible to carry out the analysis for RHF  and U H F  approach simul- 
taneously. In the molecular orbital crossing the configurations k and k as defined 
above exchange the role. 

Slater determinant formed by the frontier orbitals [g*~) for 2 = c~, fl is [compare 
Eq. (A 1)]: 

]D)k = ]//2.,i [7'~, 1)1~, 1 ) I ~ ,  2)[fi, 2). (3) 

One electron density matrix in the representation of [q~m) [compare Eqs. (A9) 
and (A 14)] takes the form: 

2 2 2* 
p r ~ ( k  ) = (IQI , G I  G2) ,~ = c~, fl (4) 

2~ )~ * .~ 2 ~ \ck~ G2, IG21 ) 
where 

~,~ = (,. IP.':(k) I v> + <,ulk'~(k) l v>. (4a) 

The first and second term in the Eq. (4a) are elements for the closed shell and 
open shell (2 = c~ or fl) one-electron density matrix, respectively. The projector 
operators/~C(k) and /~(k)  on the closed shell and open shell Fermi seas are given 
in the Appendix by Eqs. (A2)-(A4) [cf. also (Ag) and (A 14)]. 

From the idempotency relation 
(pr~)2 = pr~ (5) 

follows (compare also [-24] and [27]): 

Pfa = �89 - ( -  1)s(a)+J ]//1 - 4p~), j =  1, 2 (6) 
and 

P~r2z = Pz exp(i ~a), 0 _< ~b~ < 2~ (7) 

where s(2) is an integer arising as a consequence of nonlinear idempotency relation 
valid for one electron density matrix [Eq. (5)]. 

The absolute value of the offdiagonal element of the one-electron density 
matrix is p~. If one-electron functions 1~o,,) are atomic (or group) orbitals, then 
p ~  + p~t~ and pr~ + p r2p are atomic (group) charges and bond orders, respectively. 
As only two electrons are taken in consideration, there are only two possibilities 
of electron distribution in Fermi seas which correspond to the restricted and 
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unrestricted Hartree-Fock method. In the R H F  ct- and fl-singly occupied Fermi 
seas are empty, i . e . / ~ = / ~  = 0  [compare Eqs. (A3) and (A9)] and p r~=  pr~, i.e. 
p~ = pp -- p, ~ = ~r - q~ and s(~) = s(fl) - s or 

PT:=pT?-P.~.  (S) 

In the U H F  doubly occupied Fermi sea is empty, R~=0  [compare Eq. (A2)] 
and pr~ ~ pr~, i.e. at least one of the following relations holds: 

p~v~pe or ~ p  or s(~)r (9) 

For R H F  approach we name as "bond order" the quantity P12 defined by Eq. (8) 
which is �89 of the customary used bond order (pr~ + pT~). Such definition of 
"bond order" is advantageous for simultaneous consideration of R H F  and U H F  
approaches. 

3. Energy Expectation Value for the Frontier Molecular Orbitals 

The effective Hamiltonian of two electrons in the frontier orbitals is: 

/4 = i(1) + i(2) + 0(1, 2). (10) 

When only the idempotency relation (5) is used [cf. Eqs. (6) and (7)], the energy 
expectation value E = (DI HID) [Eq. (A6)] for the Slater determinant given by 
Eq. (3) takes the general form: 

E' = E - (h I 1 -1- h22) - - / " 1 2  = 2fl'(p~ cos ~ + pa cos ~p) 

A 
+ ~ -  {1 + ( -  1) ~(')+~p) [(1 - 4p 2) (1 - 4p~)] ~} + 4K12p=pt 3 cos ~b~ c o s t a  

01) 
, I  

+ ~ -  [ ( -  1) s(~) (1 - 4p2) ~ + ( -  1) s(~) (1 - 4p~) ~] 

+ Z [ ( -  1) s(') (1 - 4p2) ~ pp cos~p + ( -  1) s(p) (1 - 4p~) § p, cos ~ , ] .  

Matrix elements hu~ are defined by Eq. (A 7) and 

fl' = h, 2 "~ �89 [12) + (22121)], (12) 

A=�89189 +Fzz)-F12, (13) 

K12 = (12112), (14) 

A - -  hi1 - h22 -k- �89  - / " 2 2  ) , (15) 

Z = (11[ 12) - (22121). (16) 

The general energy expression Eq. (11) will be used for studying the effect of 
introducing the specific constraints. The arbitrary linearly independent one- 
electron functions [qh) and I~oz) [compare Eqs. (1) and (2)] forming a suitable 
two-dimensional basis for a frontier orbital model figure in all integrals from 
Eqs. (12)-(16) following the notation given by Eqs. (A7) and (A8). In the simplest 
caseof two-dimensional one-electron density matrix Eq. (4) the energy E' Eq. (11) 
is a function of independent variables p~, p~, cos~0~, cos ~ and of the integers 
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S(C0 and s(/3). For the n-dimensional case the energy in terms of independent 
variables, generalized Eulerian angles, is given in Ref. [27]. The energy expecta- 
tion value E' [Eq. (11)] has extrema for the frontier MO's 17J~), which are eigen 
functions of the Hartree-Fock operator FZ defined in general by Eq. (A 12). 

It is possible to find the extrema of E' by carrying out derivatives with respect 
to the independent variables. This procedure is an alternative to the introduction 
of the Lagrange multipliers in the variational technique which leads to the pseudo 
eigen equations of the Hartree-Fock operator P~. 

4. Extrema of the Hartree-Fock Energy in the Representation of the 
Equivalent Orbitals 

If the one-electron function 191) from Eqs. (1) and (2) is transformed under 
the symmetry operation ~(~2 = I) into [~02) as: 

]q0z) = Tlqh)  (17) 

and vice versa, then these one-electron functions are equivalent orbitals and we 
name them IZl> and IZz>. In this case A =  Z = 0  in the energy expression given 
by Eq. (11). It is possible to show that the conditions for extrema of 

E' ( ~E' ~?~E' = 0 , 2 = ~ , f l )  

are simultaneously satisfied if and only if p~ = p a - p  and c o s ~  = c o s t a -  cos~. 
Therefore, we will consider the energy expression Eq. (11) in the basis of equivalent 
orbitals I)fi), IZz) [-Eq. (17)] under these limitations z : 

A 1)s~) + ~(p) E'=4fl'pcosq)+~[l+(- (1-4pe)]+4K12p2cos2~. (18) 

Expressions /3', A, and K12 defined by Eqs. (12)-(14) contain integrals in which 
now enter equivalent orbitals. The energy expression given by Eq. (18) can exhibit 
the following extrema which are simultaneously the only possible extrema of 
the more general energy expression [Eq. (11)]. 

a) For sin �9 = 0 and cos ~b = _ 1, i.e. for the real "bond order" [Eq. (7)], E' 
exhibits extrema at the end of the interval of physically acceptable values for 
"bond order": 

P12 = p c o s ~ =  +�89 (19) 

These extrema are the only symmetry adapted HF solutions. 
b) For  sin q~ = 0 other extrema can occur if: 

/3' cos 
p = ( _  1)sc~)+s(~)A _ 2KIz (20) 

where cos~b = + 1. Existence conditions for the extrema given by Eq. (20) are 
(compare [10]): 

2/3' cos ~/i < ( _ 1)~ ~) + s~a) A - 2K 12. (21) 

2 These conditions imply that for UHF approach prj = pr~, p~, = pr~, and P2r~ = P,~. 
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c) For  sin q' # 0, i.e. for the complex  "bond  order",  the ex t r emum is ob ta ined  

Y if p = �89 and  cos q~ = - - -  i.e. if 
K12 

P12 - (22) 
2K12 

The  existence condi t ion  for this e x t r e m u m  is ( compare  [20]): 

-- \ K 1 2  j J 

lYl < K~2. (23) 

5. Stability and Instability of the Real Symmetry Adapted RHF Solution; 
UHF, Complex HF Solutions and Nonuniqueness of the Real RHF Problem 

Let us consider the two-d imens iona l  basis formed by the Vectors  [A> and 1 B> 
defined as 

1 
IA) = ~ (IzI > + Izz)) ,  (24) 

1 
[B) = ~ -  (IZI) - [Z2)), (25) 

where [Zt> and  122> are equivalent  orbi tals  [cf. Eq. (17)]. Vectors  [A> and [B> 
describe the energy ex t rema given by the real "bond  order"  p = �89 cos q~ = 1 and 
p = �89 cosq~ = - 1, respectively [Eq. (19)]. The  IA> and [B> are symmet ry  adap ted  
real restricted H F  solut ions cor responding  to the irreducible representat ions  
a and  b of  the symmet ry  g roup  (I, T). 

In order  to determine if these symmet ry  adap ted  R H F  solutions are min ima  
or maxima ,  we invest igate the energy expecta t ion  value 

El, = <O[, I / ]  I O[,> �9 (26) 

A var ia t ional  Slater de te rminan t  IDa> is of the fo rm given by Eq. (3) where 

I ~ >  = Ik> + ~ IF>, ,l = c~,/~3. (27) 

C o m p a r e  also Refs. [19, 28]. A small  var ia t ional  pa rame te r  6~ can be generally 
a complex  number .  If k = A then k = B and vice versa. If the var ia t ion remains  in 
the f r amework  of R H F  then g~ = 6~ = & The  var ia t ional  functionals E~ and E~ 
will be used to invest igate  the behav io r  of  these energy expectat ion values in the 
ne ighborhood  of the Points  IA> and  [B> defined by t ~ >  =1~'~> =IA> and 
I ~ >  = ITg> =IB>.  Express ion for El, Eq. (26) with integrals in terms of the 
Vectors  IA> and IB> is ob ta ined  f rom Eq. (11) taking into account  that  the first 
order  terms in var ia t ional  pa rame te r s  6z vanish due to Brillouin theorem. For  
small 6x, P~---16xl and  the te rms higher then second order  in 6x are neglected. 

3 In the definition of variational molecular orbital Eq. (27) instead Ik> can be introduced any 
suitable Vector 10> orthogonal to Ik>. Such generalized definition is convenient for one-electron 
orthonormal basis I#> of arbitrary dimension. For use of this basis compare Ref. [19]; Marshall, W.: 
Proc. Phys. Soc. (London) 78, 113 (1961), and Musher, J. I.: Chem. Phys. Letters 7, 397 (1970). All the 
results from the Section 5 are valid for such generalized basis as well. 
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Under these assumptions the variational energy E~, can be written: 

E~k = 2hkk d- Ckk - -  ([(~tl 2 71-16pl 2) [hkk -- hgg + Fkk -- Fkg ] 
(28) 

+ 4 Re(6~) Re(6~) Kk~ 
where 

hkk=(k lh (1) lk ) ,  Fkk=(kklkk) ,  Fkg=(kklkk) ,  Kk~=(kklkk)  (28a) 

with k = A ,  B and k = B ,  A [compare also Eqs. (A7) and (A8)]. 
The energy expression given by Eq. (28) can be written in the form (compare 

also [191): also [191): 
E V  I~RHF k-- ~k  - - ( I G I  2 + 1@ 2 [l'3E(k~k)-T- Kki] 

(29) 
+ 4 Re(6~) Re(Sp) Kk~, 

where 
E RtlF = 2hkk -Jr- Ckk (30) 

is restricted Hartree-Fock energy in the investigated extremum point k and 

1 3 ._..> ~ ' E(k )=h~- -hkk - -Fkk+Fk~+Kk~,  k = A , B ;  -k=B,A) (31) 

are the singlet and triplet energies assigned to the singly excited configuration 
k-* k (compare [23]). 

The neighborhood of the extremum Points IA) and IB) [Eqs. (24) and (25)1 
can be investigated in various directions using Eq. (29) with different assumptions 
upon variational parameters 6~ and 6p. 

a) tf 6~ = 6p = Re (c5) then variational parameters are under the constraints 
which characterize the real R HF  problem [IT~)=lgJ~) from Eq. (27)]. The 
stability condition in the Point Ik) i.e. the condition that the extremum in this 
point is a minimum follows from Eq. (29) in the form: 

~E(k-*-k) + Kk~ > 0. (32) 

If in the definition of molecular orbitals Eq. (28a) the orbitals [A) and IB) are 
expressed in terms of equivalent orbitals IZl) and IX2) [Eqs. (24) and (25)] one 
obtains the stability condition given by Eq. (32) at the Point [A) (i.e. p = �89 cos~ = 1) 
in the representation of equivalent orbitals as: 

- -  2 f l '  + A - -  2 K ~ z  > 0 .  (33) 

For negative values of fl' inequality (33) is satisfied for reasonable localization 
of Ix1) and I;(2) implying A > 2K~2 (compare also [20]). In this section we will 
consider only the case of fl' < 0. For/3' > 0 the role of Points IA) and IB) is ex- 
changed. The stability condition [Eq. (32)] at the Point ]B) (p=�89 cos~  = -  1) 
indicating the possibility of a maximum between IA) and IB) for real RHF  is: 

2/3' + A - 2K12 > 0. (34) 

This condition can be satisfied for large enough A or small enough I/3'1 and it 
is equivalent to the existence condition Eq. (21) of the extremum given by Eq. (20) 
when s(ct)= s(fl). It is easy to show that this extremum is the maximum, indeed, 
lying between the two minima at IA) and IB). This trivial connection of two 
stability conditions in the Points tA) and IB) and the existence of a maximum 
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between them is an illustrative model of occurrence of nonuniqueness of the HF 
solutions. In this simple frontier molecular orbital model the partial bond order 
of the frontier orbital IB) [Eq. (25)] has negative value (P12 = -�89 but the total 
bond order in a polyatomic molecule can be positive if all MO's are taken into 
account. Two different HF solutions giving minima at ]A) and at IB) are symmetry 
adapted solutions. They differ in the number of MO's belonging to the irreducible 
representation a and b of the symmetry group (I, T). Similar cases of nonunique- 
ness of the symmetry adapted HF solutions have been found for the alternant 
hydrocarbons in the PPP model, especially "Kekul6" and "Dewar" type solutions 
for long polyenes [21, 22]. In this case when the frontier orbitals do not have 
necessarily the leading role in determining electronic structure (except for almost 
infinite polyenic chain), the number of MO's which belong to the representation 
a is the same for "Kekul6" and "Dewar" solutions [22]. Therefore these two 
solutions cannot be easily interpreted as a ground state and a doubly excited 
state. 

b) If variational parameter ~, = - 6~ = Re6 (i.e. real UHF problem), then the 
stability condition is: 

3E(k--, k) - Kk~ > 0. (35) 

At the Point FA) the instability condition in the equivalent orbital representation 
[Z1) and lZ2) has the form: 

- 2 f f  < A + 2K12.  (336a) 

The inequality (36a) is equivalent to the existence Condition (21) for the real 
UHF solution given by Eq. (20) when s(e)=s(f l)+ 1 (compare [10]). This UHF 
solution is a minimum. The corresponding instability condition at the Point IB) 

2ff < A +2K12 (36b) 
is always satisfied. 

c) If [6~1 = _-4-I~! = Ira(6) (i.e. complex HF  problem), then the stability condi- 
tion takes form: 

~ E(k-~ k) - K k  ~ > 0. (37) 

The instability conditions at IA) and IB) in equivalent orbitals basis are (compare 
1-20]): 

--fl' <K12 (38a) 
and 

fl' < K12. (38b) 

The Condition (38 a) is equivalent to the existence Condition (23) for the complex 
HF solution Eq. (22), which is a minimum. The RHF and UHF complex solutions 
do not differ in this simple model [compare Eq. (18) with p =  �89 The Condition 
(38 b) is always satisfied for ff < 0. 

6. Overall Behavior of the HF Energy 

For the full understanding of the overall behavior of the HF energy for the 
frontier orbital, it is sufficient to consider the local energy properties of the ex- 
tremum points described in Section 5. This is easy here because the energy expec- 
tation value Eq. (18) is a real quadratic function of only two independent variables. 
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e r n l n  

-I/2 o 6 o I / ~  Re (P) 

lco,0 
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Fig. 1. Schematical picture of the "bond orders" representing the possible stoppings of the interative 
procedure in the complex plane. Points [A) and ]B) correspond to symmetry adapted RHF solutions. 
R .... Um~,, and Cm~ . represent the real RHF maximum, real UHF minimum and HF complex solutions, 

respectively 

For the RHF problem (s(e) = s(/?)) and for the U H F  problem (s(c~) = s(fl) + 1), we 
label E' [Eq. (18)] as E R = E R (Ie121, Re(P12)) and E v = E v ([P~2[, Re(P12)), respec- 
tively, where P12 = p  exp(i@) is a complex variable, which can be interpreted as 
a RHF or U H F  "bond order". The complex "bond order" interval is the part of 
the complex plane inside the circle with the radius tPlz[ = �89 The surfaces E R and 
E v in the 3-dimensional space Y [with coordinates Re(P12), Im(P12), and E'] 
have the common points of the circle Ie121 =�89 The Points [A) and [B) which 
give symmetry adapted energy extrema are in the crossings of the real axis with 
this circle (Fig. 1). 

The Point [A) is a saddle point of the RHF energy surface ER (in the space 
Y) if the existence condition for minimum of the complex HF wavefunction is 
fulfilled Eq. (38a). This saddle point is a maximum in the direction of the imagi- 
nary axis and the energy at [A) is higher than at Cml . which represents the complex 
HF solution (Fig. 1). If inequality (38 a) is not satisfied, the Point [A) is a minimum. 

The Point [B) is a saddle point of E R if the stability condition of real RHF 
problem Eq. (34) is satisfied at [B). In this case the energy path from ]A) to [B) 
in the direction of the real axis goes through maximum Rma x shown in the Fig. 1 
and given by Eq. (20) with s(e)= s(fi). If inequality (34) is not satisfied [B) is a 
maximum of ER. 

With respect to the UHF surface Ev ,  the Point [A) is a maximum if the existence 
condition for the complex solution Eq. (38a) holds. In that case the inequality 
(36a).holds always, as well, and gives rise to the real U H F  minimum. If Eq. (38a) 
is not satisfied but Eq. (36a) holds IA) is a saddle point of E v. If neither of these 
existence conditions hold, [A) is a minimum of E v. The point IB) is always maxi- 
mum of E v. Therefore, if the existence condition for real U H F  minimum (36a) 
is fulfilled, the energy path from IA) to [B) in the direction of the real axis goes 
through the absolute minimum Umi . o f E  v shown in the Fig. 1 and given by Eq. (20) 
with s(e) = s(/?) + 1. 

As for the two-orbital model surfaces Eg and E v have the common points 
of the circle 1P12[ = �89 RHF and UHF minima for the complex wavefunction are 
identical. The general stability conditions derived by Ci2ek and Paldus [61 show 
as well, that in the two-dimensional case the singlet and triplet instabilities (i.e. 
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R H F  and U H F  instabilities) are the same for variation in direction of the imaginary 
axis 4. The complex R H F  and U H F  minima are not necessarily identical for 
more complicated models (more than two dimensions), which is indicated by 
the general form of the stability conditions [6]. 

The derivative of the U H F  energy expression [Eq. (18) for s(c~)=s(]3)+ 1] 
~?E' 

with respect to the absolute value of the "bond order" ~p at the Point Cmin 

(cf. Fig. 1) is negative. The Points Cmi n and Umin on the energy surface E v are 
connected by a valley which decreases from Cmi n to Umi n (cf. Fig. 1). 

7 .  D i s c u s s i o n  

The appearance of the singlet and triplet excitation energies 1E and 3E [Eq. (31)] 
in the stability conditions [Eqs. (32), (35), and (37)] illustrate the importance of 
magnitude of the energy gap between the highest occupied and the lowest un- 
occupied molecular orbitals with respect to the ground state configuration. This 
indicates that the correlation effects are essential for handling these configurations 
of the closed shell molecules for which the strange H1 = properties are likely to 
occur. The connection with the electronic correlation can be also clearly seen 
if the stability conditions given by Eqs. (32), (35) and (37) are expressed in terms 
of quantities ~/and ~: which characterize directly the correlation effects: 

2(Da ]/IlDB) A 
- - -  ( 3 9 )  

rl= AE(A--, B) 41/3'1' 
and 

2AE K12 
= 1 AE(A-->B) I/~'1 ' (40) 

where IDk) for k =  A, B are Slater determinants [Eq. (3)] with I ~ , ) =  Iht'~)~-Ik) 
[compare Eqs. (29) and (25)] and 

AE(A--*B) = (DB I/~ I DB) --(OalffllOA) ---- 41/3'1 (41) 

is the energy difference between the "doubly excited" configuration D B and the 
"ground state" configuration Da. The symbol ~ denotes the average value of 
singlet and triplet excitation energies [Eq. (31)] giving the same weight to singlet 
and triplet: AE = (1E + 3E)/2. 

The quantities A, K~2, and /3' (assuming arbitrarily /3'< 0) in Eqs. (39) and 
(40) are molecular integrals defined by Eqs. (12)-(14) expressed in the equivalent 
orbital basis [Eq. (17)]. 

The mixing between the closed shell configurations IDa) and IDn), which 
in this simple case means the full configuration depends only on the interaction 
parameter q [Eq. (39)]. Applicability of Hund's rule for the particular molecular 
configuration can be measured by the parameter x. If x > 1, then A E < 0, i.e. the 
energy of the triplet state has a lower value than the energy of the singlet state 
which means that triplet is the lowest state of the molecule (Hund rule). 

4 The stability conditions resulting from this analysis were first given by 0i~ek and Paldus [6] 
and later repeated by Ostlund [28]. Compare also Eq. (35) of Ref. [30]. Some of them have been also 
obtained by Harris and Falicov [14b]. 
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The stability condition in the framework of the real RHF [cf. Eq. (34)] at 
the Point [B) having energy higher with respect to the Point [A) indicates the 
existence of the real RHF maximum and therefore the nonuniqueness of the 
RHF solutions. This condition can be written in terms of t/ and ~c [Eqs. (39) 
and (40)] as" 

t /> �89 + ~) (42) 
o r  

2(DAIHIDB) > A E ( A ~ B ) -  AE. (42a) 

The instability condition in the framework of the real UHF approach at the 
Point IA) given by Eq. (36a) is" 

t />  �89 - ~:) (43) 
o r  

2(Da [H IDB) > AE. (43a) 

The existence condition for the complex HF solution [Eqs. (37) and (38a)] can 
be simply written as: 

x > 1 (44) 
o r  

AE < 0. (44a) 

In the zero-differential overlap approximation K12 = 0. Therefore, the complex 
HF solution cannot be obtained at all [compare Eqs. (40) and (44)]. If K12 = 0 
the existence conditions [Eqs. (42) and (43)] for the real RHF maximum [Eq. (20): 
s(a) = s(fl)] and for the real UHF minimum [Eq. (20): s(a) = s(fl) + 1] are identical. 

For the existence of the complex HF solution, as Eq. (44a) shows, it is necessary 
that the energy of triplet is lower than the energy of the lowest singlet. Increasing 
value of x makes easier existence condition for real UHF minimum [Eq. (43)] 
to be satisfied and at the same time the occurrence of the real RHF maximum 
[Eq. (44)] more difficult. 

The relatively small energy difference A E(A--,B) [Eq. (41)] between the two 
configurations is the necessary condition that the parameters r/ [Eq. (39)] and 
x [Eq. (40)] are large. Such cases are known from the molecular orbital descrip- 
tion of the rearrangements of the molecular structures as the orbital energy 
crossings [29]. 

According to the inequality (43 a) the matrix element (DA[t?IlDR) determining 
interaction between Configurations Da and D R must be sufficiently large in 
comparison with the average value of the singly excitation energies AE from the 
Configuration DA in order that the condition for the UHF minimum is satisfied. 
Easy occurrence of the UHF minima shows a tendency of spin decoupling. The 
condition for the RHF maximum (42a) is that the quantity (DAIHIDR) is larger 
than half of the difference between the energy of the doubly excited state and the 
average of the singly excitations from D A. 

It seems that the above discussion can be generalized: Whenever two configu- 
rations exist for which the interaction is large (parameter q) the "strange" HF 
solutions can occur and such molecular configurations show diradical character. 
This kind of configuration interaction has a distinctly different character from 
the configuration interaction for the ground state of molecules in the eqUilibrium 
geometries. As it is well known in the later case, the correlation energy contains 
many small contributions from the interactions of the ground state electronic 
configuration with many excited configurations. 
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To summarize, the "strange" properties of the HF solutions can be taken as 
indication of the reactivity for the molecular configurations for which they occur. 

Acknowledgement. The authors would like to thank Professors J. Ci~ek, J. Paldus, and R. F. Pratt 
for interesting discussion on the HF  problem. 

Appendix 
Eneroy Expectation Value for a Slater Determinant 

Let us consider a Slater determinant ID) for N electrons constructed from spin orbitals which 
are eigenfunctions of the operator Sz (compare [27]): 

N~ 

ID> =(N!)* A [ I  [lPj, J> la, j> ]Ipj, No+j> [fl, No+j> 
j=i (A1) 

N~ + N~ N -  Nc 

H ]~&,Nc+l>la, Nc+l> II I~p~,N,+s>lfl, Nc+s>, 
l = N c + l  s=Nc+N~+l  

where A is the antisymmetrizer, N~ is the number of doubly occupied MO's (]~pj, j)), N~ and N~ are the 
numbers of singly occupied MO's with a and fl spin, respectively. 

The projectors on corresponding vector spaces are (compare also [27]): 

N~ 

R~= ~ ]~j, t )  (~pj, 1[, (A2) 

/ ~ =  ~, I'P~, 1) (,pj, II, (A3) 
j=N~+I  

N - N .  

/~t~ = ~ I~Pj, 1> (~pj, 11. (A4) 
j = N c + N ~ + I  

Notice, t h a t / ~ . / ~  = 6 for 2 = a, fl, b u t / ~ . / ~  # 6. We call the spaces , ~ ,  M~ and Me characterized 
b y / ~ , / ~  and/~r doubly occupied, a-singly occupied and fl-singly occupied Fermi seas, respectively. 
Using expansion in any arthonormal basis I#), the expectation value of the Hamiltonian 

/~=  ~. ,h(])+ ~(],k) (A5) 
j - - t  j < k  

takes the form (compare Eq. (6) of Ref. [27]): 

E = (D[ B I D )  = �89 T 1 PL h~ + : 5~ r.  er~ rP (P~ C~+-.~ -~, 
~.~=a ~.~=, (h6) 
M 

= E Pf.h~+�88 Z (#~[va)[2Pr~e;~-ProP~-P~o v~l 
p , v = l  It, v,O,a 

where 
h.~ = (#, 11 h(1)Iv, 1) ,  (A7) 

(,uvlQa) = (/~, 11 (e,  21 0(l, 2)Iv, 1) ]a, 2 ) ,  (AS) 

Pff~=(v[.~c+k~[p), 2=cqf l ,  (A9) 

PT~ = (v[ 2fit ~ +/~" +/~a IP) = PTr + pry,  (A 10) 

,p;=pL, pT~, (Al l )  
and 

Fu z, = h,, + E {P~-[(ktvl~ ~ - �89 ev)] T �89 I~oa)}. (A 12) 

In Eq. (A 12) upper and lower sign corresponds to 2 = a and fl, respectively. Vectors of the used ortho- 
normal basis are labeled by #, v, Q, a. 
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Using expansion of one electron function l j> in orthonormal basis I#> 

[J> = ~ I~> <#l J> = Y~ cj~ I~> (A 13) 
g t  g 

bond order matrix elements of the Eqs. (A 9) and (A 10) can be written: 
o w - -  P~v - ~ * (A 14) gl~j C j# C jv  , 

j e . ~  

where ~ can be doubly occupied ~c  or ~-singly occupied ~-" or fl-singly occupied ~r sea 
with corresponding occupation number rn~. 
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